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An optimal control problem is analyzed for a stochastic dynamic system with
the aim of maximizing the probability of hitting onto a fixed set at a finite in-
stant, It is assurned that the set is a sphere of small radius, An irregular asymp-
totic expansion in powers of a small parameter — the sphere’s radius — is con~
structed, Each term of this expansion is determined in an explicit analytic form,
The approximate synthesis of the optimal control is found. Error estimates of
the approximate method are proved, Examples are given, The problem on the
probability of a controlled phase point hitting onto a small fixed neighborhood
of a randomly moving point on the whole interval of motion has been studied
earlier (see [1]). The present paper is akin to [2-~5] with respect to the me-
thods used,

1, Statement of the problem, Let a controlled motion be described by the
system of equations

de/dt = A Nz + B, yut+C@HEQR, z(t) =2 (LD

Here & is the n~-dimensional phase coordinate vector, u is the m-dimensional control
vector, £ (1) is the n-dimensional vector of random perturbations acting on the system,
4 (t), B (x, t) and (C (t) are matrices of dimensions n X n, n X m and n X n,
respectively, with elements depending smeothly on £ and z. It is assumed that matrix
C (t) is nonsingular for £ & [y, T]. The random perturbation vector is Gaussian white
noise of unit intensity,

The constraints v U (1.2
are imposed on the controls, where IJ is a given bounded compact set in R™, It is as-
sumed that an exact measurement of the phase vector Z (£} of system (1, 1) is possible
at any instant £ [, T1. 1t is required to find a control method # & U maximiz-
ing the probability that the phase vector z () hits onto the set

Re = {z; (1% + ... )1 <L &} (1.3)

at a finite instant T, Itisreckoned that the radius of sphere R, dependent on a num-
ber g, is fairly small,

Note, If the elements of matrix 4 () depend smoothly on ¢ € [te, T 1s system(1.1)
can be reduced to the system

dz/dt = B (z1, t)u+ C @8 (1), 2 (b) =2,

by a change of variables. Therefore, without loss of generality it can be assumed that
AM=0in(1.1).

Consider the Bellman function S (z, ¢} of problem (1,1) —(1.3),equal to the maxi-
mum value of the probability of hitting onto set R, under the condition that the process
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Asymptotic solutions of some probabilistic optimal control problems 11

starts from a phase vector z (£) =  at an instant ¢, The Bellman equation for func-
tion S has the form [2 — 4]

S. = max, H (z, v, S, u) + Y/, Sp (C1Cy' Sxx) (1.4)
n
SP(Cily'Sax) = 3 €15(%) Sy
i, 7= 7
Here T — ¢ = 7 isreverse time, S is the partial derivative with respect to ¥, S,
is the vector of first partial derivatives, S, is the matrix of second partial derivatives
of the function S with respect to the components of vector 2, C, and B, are matrices
obtained from matrices ¢ and B by the substitution £ = T — 7,
The inequality

n
O<i§1cﬁ(x) Miky <do | AP, | M50, do=const (1.5)
is valid since matrix C is nonsingular for all T € [0, T] . The function § satisfies
the boundary condition 1,z R,
S (z,0) = {0’ z & R. (1.6)

at the instant T of process termination, corresponding to the value T = 0 .

As a result the problem (1. 1)—(1.3) on determining the optimal control synthesis is
reduced to solving a Cauchy problem for the nonlinear parabolic Eq, (1,4) with bound-
ary condition (1, 6) under the assumprion that a solution of Eq. (1.4) with (1, 6) exists
and is unique, An exact description of the class of such problems can be found in mo-
nograph [6], The optimal control is determined after the determination of function §
from the condition that the maximum is achieved in (1. 4),

2, Small parameter method, Introduce the new variables
= x;/e, i=42,..,n (2.1
Equation (1,4) and condition (1, 6) take the form

A(S;u) = — 25, + e max, H (ze, 7, S, 1) + 5 2 045 (¥) S1yy=0 (2.2)
i, j==1
s 0 _ {1, ze= R, }
GO=% =028, B={5@’+...20<1

Note. The optimal control problem for a system in the presence of measurement
errors for the phase vector # (f) and the problem on maximizing the probability of hit-
ting onto a fixed set at the instant ¢ = T if the intensity of the Gaussian white noise in
(1.1) is a quantity of the order of &~ or if the possibility of control turns out to be small, -
both reduce this same mathematical problem [5],

Assume that a number & > O exists such that the relation

H (ze, v, S, u) = e*H® (z, T, S,, u)
is satisfied, where the function H*®is bounded for all € >> 0 and for finite values of its

arguments n n
He (2,7, S,u) = e* Qu; X by (2,7) Sy, byy® = £9b (ze, 1)
=
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Denote by L* (&) the differential operator
n
1
Le (S) = — g2, -+ <5 Zl Cij (™ Szizj (2.3)
%, )=1

An approximate solution of problem (2. 2) is sought as a sum of two functions

S° (z, 1; €) + el+* § (z, 1; &) (2.4)
The function S° is found by solving the boundary-value problem
Lo (8% =0, Sh=p =8 [s=0 =¥ (2) (2.5)
The function S! is determined as a solution of the problem
Lf (SY) + max, He (z, 7, 55 u) =0, S'|imo =0 (2. 6)

It will be shown below that in certain cases it makes sense to seek the approximate so-
lution of problem (2. 2) in the form

S° (z, 7; €) - ... &4 Si(z, 15 €) (2.7)

where the functions S* (k = 2,3, ..., j) are determined recurrently from the solu-
tions of the boundary-value problems

Lt (S¥) 4 max, Ht (z, 7, S u) =0, S¥|ep=0 (2. 8)
The functions v°, V', ... from U are determined by the relations
max, H¢ (z, T, S}, u) = He (z, 1, S}, 1), i=0,1,2,.. (2.9

The solution of each of the boundary-value problems (2, 5) and (2, 8) can be obtainedin
explicit analytic form, For this it suffices to write down the fundamental solution of Eq.

(2. 5) 2 L i3
pe—nn =G em e { = ) ol (M@= &l

Here ¢, (t) are the elements of the matrix inverse to the matrix | ¢;;” [, which is de-
fined by the formula <
Cijo = S Cij (Tl) dTl
0

The function S° is found as a result of a convolution with respect to variable z

S°(z, 1; &) = P* (2, T)%S° (2, 0; 8) = S pE(z — A, T)dA (2. 10)

M<1

The functions S¥, & = 1, 2, ...,j are determined by the formula

S* (5, % ) = § § HE (b, 0, SE (b, 1 895 p2 (2 — by T — ) dAdT1 (21D
0

d).=d).1...d.},“

the integration with respect to A in (2. 11) is carried out over R".Certain properties of
the functions S¥, k = 0, 4, 2, .... j should be noted.
Lemma, Let the coefficients b;;* be of the linear form H¢ satisfy the inequality

| bt (2, V) | < bo (1 + D (e)]2]?), by, b(e) = const (2.12)
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Then the bounds
[ D' S° | < My el vtz exp {—e2y,|z|2/ %), 112 (213)
ol
R
D= dzhrazh
7%

| D'S¥| < My e*+1¥l exp {—vie*| 2]/ (x 4+ &) + et} (2.19)
[ty b=t

b=l

with certain constants My, 5, 0 and ppare valid,
Proof. The derivatives with respect to variable z of the fundamental solution p¢
of boundary~value problem (2, 5) satisfy [7] the bounds

| D' p* (=M, ) |<Cel ] %118 mee=niz exp {—ye?e—A |1}, |1I<2

with certain constants m and 7y depending on the coefficients ¢y (¥) in the last rela-
tion of (1.4), Therefore
| DIS° | L eltlaiting (z, 1, 8)

where
— el 32
I(z,7,8)= me"y-"/? S exp{ ye [Tz M}dx
M1

The equality
I(z,7, &) = me™t—"/2exp {;"—2‘;—“-'-2-} X

\ exp{-aﬂy(mz—zi’%”i)}ﬂ

M i=]
is valid, When |A | < 1 the maximum value of the form
n
Aiz;

equals n
2zl
hence when |z | > 4
1(z, 7, 8)<< M,’ oxp {_8270 I — 221 i )} My’ exp {-—M}

Here My’ is a constant such that I (0, 7, 8) < M,'. On the other hand, when | z | <
4 and v 10, T the integral 7 (z, 7, &) , as a function of z , T anc® ,is bounded
Therefore, a constant M, > M’ can be chosen so as to satisfy inequality (2, 13),

Let us prove inequality (2, 14) with & = 4 for the function S, The estimate

[H® (z,%, 82, 0) | < Kyevsexp {—e? 1 | 2[? /1), Ky=const

is valid by virtue of inequalities (2, 12) and (2. 13). At first we show that function §1
and its tirst derivatives in z are bounded on the set | z| = O for all T. Using inequal-
ity (2, 13), from (2. 11) we have
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1S3, <§S z‘,|v°1 2 15 WIS, (i 0)]
(z ?\.,r-——n){d?\.dtl

t

<K S S 171 (% — 13)~he" (7 — 7)™ exp {:3’_'31_’_:’:_’_} dadr,
0

t—1y)
1=4,2,...,n
Since
e"(v— 1 )™\ exp {—:-Y(%?-!_:’—;-:)—A'-E-} dh < K3 when |z]=0

the inequality
lS;t (O, "C’; 8)‘ < KQBST” Ie T Tl)—”'d'rl, l= 1: 29 seegh

is valid with the constant K, = K ,Kg . Set Ty = 1, / 1. To within a constant the last
integral takes the form

1
L= Sfill’ (4 — Ty dvs
]

This expression is the Fuler integral of the first kind (beta-function) which can be ex-
pressed in terms of the Euler gamma-function
_Ireme _
r'ad)

As a result we obtain that the functions S§,? (= 1, .., n) are bounded for} z|=0
and T e [0, T1.

Letusset §1 = e w exp {— &y, | 2|2/ [dy (v + 6y)] 4 &°ny T}, where dy, &,
and p, are constants to be chosen later, From (2,7) we have that the the relations

Lr ) + Lt W) + 1y (27, &) w 4 etexp {fetpp | z] 2/ (219

ldy (v 4 8] — e?uyv) He(z, 7, 8% 0°) = 0, w feo =
are valid for the function p . Here

5 n
Ly (w) = 4 (::_Y_oa ) Cij (v) (szzi + ziwzj)
i, j=1

sE O\ 1%
R e = s ), o e 610

i, =1
n

—22%__ V. (1) — pe?
AN

Since inequality (1,95) is satisfied, by choosing the constants dy = 5d, and py== 2e0V0 /
5d¢0,, where ¢, is a constant such that

| 3 eatol <

i==1
we obtain that the function f, (z, T, &) << 0 forall z and 7. This enables ustoapply
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to Eq. (2. 15) the maximum principle [8] for parabolic equations on the set I F |> g9 >
0, v e [0, T]. If the number &, is fairly small, then by virtue of continuity on the set
| z[ < g, the function w, as was shown above, is bounded; l w ]éKﬁ, Ky >nK,/
<. From the maximum principle it follows that function w is bounded on the set| z | >
&, T & [0, T] and inequality (2, 14) is satisfied for | 2] = 0. We now choose a con-~
stant M; > K and a number 8, such that &, > g2y, / 5dy (In M, — In K.,), then
inequality (2, 14) remains valid for all z and T with V1 =¥,/ d; for | I| = 0.

In order to obtain estimate (2, 14) for the derivative of function St it is necessary to
differentiate Eq. (2. 6) with respect to variable z and to repeat once more the arguments
used above, The single differentiation with respect to z increases the order of estimate
(2.14) in & by unity, The estimates for the functions S*¥ %k = 2, ..., J are obtained
similarly, using estimate (2, 14) with | /| = 1.

3, Error estimates for the approximate solution., Approximate
synthesis of the optimal control, Denote W! = §° | g1+®)S1, where S°
and S? are the functions obtained by formulas (2. 10) and (2, 11) as a result of solving
the boundary~value problems (2, 5} and (2, 6), Here ¢ is the positive number defined
earlier in Sect, 2, Let us estimate the error yielded by the function W1

Theorem 1, Let condition (2, 12) be satisfied, Then the estimate

| S — W< Kuet*®aexp {—e¥y, | 2|2/ (v +8)) + & puy3} (3. 1)

is valid for function W* . Here function S is a solution of the Bellman Eq, (2.2); v,
8, and p, are the constants occurring in (2, 14) and K is a constant,
Proof, Letusset § = W' 4. . Taking the notation in (2. 2) —(2.4) into account,

we obtain
0=A4(S;u)=A (5 fe*e 8! 4 @;u) = Lt ($°) +- '
glre L (ST) L (o) +e'+* max, H* (2, 7, §,° 4 &1+ 8, L o,; u)

S max, He (5,7, 82 4+ eS8t 4oy W) < H (57 S0 ) +
el+e He (z, 7, S, vY) + maxy H® (z, 1, 0, 4)
where 3° and v'are the functions defined by relations (2, 8), the inequality
0=A4(8; u) <Lt (S +el+e[Le (SY + He (2,1, S5, D)+ (8.2
X He (2,7, S,L, oY) + A (0; u)

is valid By virtue of (2, 5) and (2, 6), from (3. 2) follows

A(o; u) 42+ He (7,7, 8,9 >0 (3.3)
Using estimate (2, 14) with | / | = 1, we obtain the validity of the inequality
| He (2,7, S,% o) | < Ket gy (2, T, &) (3.4)

81(2, 7, &) = exp {—e | 2| %/ (v + &) + € py}
Weset © = o;  Kte**? g, (7,1, &) ; then

A (0;u) 4 He (2,1, S, N < 4 (03 u) +h{(zT € 4+ (3.5
K g+t g (2, T, €)
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Here ylis a function from U such that

maxu H! (Z’ T, (01,21 u) = H-z (Z, T, (D]_,z, ul)

f (2,7, 8) = f1 (2,7, €) g1(2,7,8) + max, H* (3, 7, g5, u) —Ket*e g, (2, 7, €)
Function f; has been defined by equality (2, 16).

Similarly to what was done in the lemma when proving estimate (2,14),it'can be shown
that f, (2, 7, €) + Ke**?* g, (z, 1, e) << 0 for all 2, T and & > (. Therefore,the

inequality Ao u) >0, o) =0

follows from (3.4) and (3. 5), Once again applying the maximum principle [8] to the pa~
rabolic operator A (@;; u'), we have that @, < 0. Hence follows the inequality

S — Wt Ktett® g (z, 1, €) (3. 6)
On the other hand, let u*be the optimal control of the original problem; then
0=A4(S;u*)>4(S; ) (3.7

is valid. Here 9" is the function obtained from (2,9) with j = 0. Using equalities
(2.5) and (2. 8), we obtain the validity of

A (WY ) — eX1va) He (2.1, 5,1, 0°) =0 (3.8)

A(W—8; ) — e+ He (2,1, 5,2, 0°) >0 (3.9
follows from (3, 6) and (3, 8),

Consider the function w, = W' — § — Kr1e**2 g, (z, 1, ¢), where K isthe con-
stant from (3. 4), Then, the equality

A (Wl - S; vo) = A ((’)2; vo) +f2 (Z, T; 8)
is satisfied, Just as before, it can be shown that £, (z, T, &) + Ke?** g, (z,7,8) <0
forall 2,7 and & > 0 ; therefore, allowing for inequality (3, 4), from (3. 9) we obtain
A (025 ) >0, 05fimp =0
Applying the maximum principle again, we obtain
wt—3S§ < Krght®= i (Za T, €) (3.10)

Now (3. 1) follows from (3. 6) and (3, 10),
Note, Condition (2,12) on the coefficients of the form H® is necessary for the ap-
plication of the maximum principle [8].
Corollary 1, Let the inequality
[ 612 ©) | < bovia [1 45 (e) | 2| 2), by, b (s) = const (3. 11)

be satisfied instead of inequality (2, 12), Then the estimate

|5 — 8°| < Koot exp {—eto | 2|2/ (8 +80) + et} (312

is valid with constants y,, 60 and py and with some constant K,.
The proof of estimate (3. 12) is similar to the proof of estimate (3, 1). Instead of in-
equality (3., 4) it is necessary to use the inequality

The inequality



Asymptotic solutions of some probabilistic optimal control problems 17

| He (z, 7, S,.,°0") | < Ko € 0xp {—e?p, | 22/ 7}

which follows from (2, 13) with l I] =1 and from inequality (3. 11).

Note 4, Itcan be shown [9] that as ent™2 _, ¢ the function S° being a function-
al of the uncontrolled motion, decreases as a quantity proportional to ent~™%, Forsmall
values of ¢ such that t™%™ — 0 the function S° is a quantity of order of unity since
the boundary condition S° (3, 0;8) = P (z) is satisfied, Therefore, the estimate (2. 13)is
weaker as ¢*t™™2 . 0 and »n>> 2 ; however, it allows for the asymptotic behavior as
| 3| — >0, which is important for deriving estimate (3, 1) under assumption.(2,12), Asymp=
totics gng™™? would impose on the coefficients of form H*® conditions of the kind of
! bz,- (D I1<Db (3)1:"/2 which are more restrictive than conditions (2. 12) and (3, 11).

Theorem 1 shows that the function W* well approximates the Bellman function S of
the original problem, However, in certain cases the following approximations canbe used,

Corollary 2, Let the hypothesis of Theorem 1 be valid and let the identities

r=vt=... v, =123... (3.13)
be fulfilled, Here the functions vj, j =0, 1, ... are determined from relations
(2.9). Then,the estimate

I S — le < KjTS(j"’l)(z‘*'a)exp {——-82’\71 l Z l 2/ ("L' + Gj) "}'— Saple} (3.14)

with constant K j and constants y;, §jand p 7 from the estimate (2, 14) is valid for the
function W’ = §° 4 e!+2§1 + . . | 4 gl+a)§7  obtained when solving the bound-
ary-value problems (2, 5) — (2. 8).

Proof, Consider the functions ©0; = § — W, Similarly to inequality (3.2) we
obtain

0= A(S;u)<C Lt (8°) + Jﬁ gl [Le (87) 4 H* (2, v, 8, V)] +
e e (z, v, 83, v') 4- ;1((.),-; L)
By virtue of (2, 6) — (2. 9) we obtain the inequality
A (05 u) + 0 He (7, 1, SF, v) >0
Hence, similarly to (3,5) we obtain the inequality
S — W Kjredeee) g (z, 7, €)
where K jis a constant, whose existence is guaranteed by inequality (2, 14)
| He (2, 1, S7, V) < Kje™ g; (z, 7, €)

The function g; (z, 7, €) is determined similarly to the function g;. The second in-
equality follows from (3,7) and the relation

A (Wi o) — &i+a) Fe (z, v, S7, 1°) =0

valid when condition (3, 11) and equalities (2. 6) — (2, 9) are satisfied.

The constructed asymptotic approximations W! and W’ j =2, 3, ... do not
answer the question on what the synthesis of the original problem's optimal control
should be,

We show that the control »° found from relation (2,9) with j = 0, is nearly optimal



18 A, S, Bratus'

in the sense of the proximity of the corresonding functionals. Let (¢ denote a function
which is a solution of the boundary-valne problem

AG V) =0, Ghepy=1(2) (3. 15)
Theorem 2, Let condition (2, 12) be satisfied, Then the estimate
0< § — G 2Kte® ™ exp {—e>y, | 2| ?/ (v + &) + ehut}
is valid with the constants K, y;, 8; and p; from (3. 1).
Proof, From inequality (3,7) and equality (3, 15) it follows that
S —G>0 (3. 16)
On the other hand, using (3. 8) and (3, 15), we obtain
AW —G; v°) — g+ He (7, 1, §1, v°) =0
Just as in the proof of inequality (3, 10) we have that
W — G > Krett¥ig, (z, 1, &) (3.17)
From (3. 17} and (3, 6) follows
0 § — G = (S — WY + (W' + G) < 2Knet%g, (z, 7, ¢)

Corollary 3. Let identities (3,13) be fulfilled and let inequality (2. 12) be valid,

Then the estimate
0< § — G 2K uetin@a) exp {—ey; |2 [ 2/ (v 4 §)) -+ &*pyr}
is fulfilled.

Note, 5, The results obtained remain valid even when the set R, is a parallelepi-
ped with sides that are multiples of the value of ¢ oris a strip of width e. In the latter
case the change of variables (2. 1) needs to be carried out only for a part of the variables,

Example, Letthe controlled motion of a material point be described by the equa~
tion . .
BFylat =u+E ju|<1, t]0, T, y(O) =y, ¥ O =1
where § is Gaussian white noise of unit intensity, We seek the synthesis of the optimal
control maximizing the probability of hitting onto the set |y | < e at the instant t=T
and the value itself of this probability, We set y = (T — #)z" + z ; then

%?ﬂ?—-t}{u%-a}, <1, t€10.T]L 2(0)=42

Such a change does not alter the functional of the final state since y (T)= = (7).
The Bellman equation and the boundary condition, allowing for substituting (2. 1), take
the form
1 1, iz 1
88, =ev|S, |+ —-im't“‘Su, Sz, 0) = {0’ ‘Ulfii

According to (2.5) and (2. 6) we find the functions §° and 8%, as well as the control ¢

2 {2 e
| exp .%_%_}E} a
i<t

8% {2, 1; &) =

8
¥ 2oy
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—1,z2>0
v° = sign S,° = sign {exp (—e? (z + 1)? / 27)[1— exp (e%2 /7)]} = {-H: 20

e i iy
82 Tl. — gl (k + 1)2 82% ]
Sz, v, 8) = b S S gy exp { 77, } [1 - 8XP {71“}] X

0 ~
— g2z~ A)2
———

exp {t— r,)} dhdv
For the case being considered we find the values of the constants used in the lemma and

in Theorem 1
My = M; = (2n) " exp (—3e}, yo = ¥/,

Ey=Ky=Ki=1, Kg=VR /2D (fy), dyg=co=1

We choose the constant K such that X > max [K;; M}, then 8, > 3¢?/40 (Ip X —
In Xy), p =3/0d1, V1 = Vo/5 = 3/4. The validity of the estimate

| § — (8° + eSY) | < Kretexp {—3e?|2]2/40 (v + 8;) + 3er/208,}

stems from Theorem 1,
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