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An optimal control problem is analyzed for a stochastic dynamic system with 

the aim of maximizing the probability of hitting onto a fixed set at a finite in- 
stant. It is assumed that the set is a sphere of small radius. An irregular asymp- 
totic expansion in powers of a Small parameter - the sphere’s radius - &s con- 
structed. Each term of this expansion is determined in an explicit analytic form, 
The approximate synthesis of the optimal control is found. Error estimates of 

the approximate method are proved. Examples are given. The problem on the 

probability of a controlled phase point hitting onto a small fixed neighborhood 

of a randomly moving point on the whole interval of motion has been studied 

earlier (see [l]). The present paper is akin to [2-53 with respect to the me- 
thods used. 

1. Statement of the problem. Let a controlled motion be described by the 
system of equations 

da’dt = A (t) t -j- B (2, t) u + & (t) c (t), x (t,) = so (1. I) 

Here 5 is the n-dimensional phase coordinate vector, u is the m-dimensional control 
vector, E (t) is the n-dimensional vector of random perturbations acting on the system, 

A (r), B (~9 1) and C (t) are matrices of dimensions n. X n, n x m and n X n, 

respectively, with elements depending smoothly on t and 2. It is assumed that matrix 

C (t) is nonsingular for t E [to, Tj. The random ~r~rbation vector is Gaussian white 

noise of unit intensity. 

The constraints 
UEU (1.2) 

are imposed on the controls, where U is a given bounded compact set in R”. It is as- 
sumed that an exact measurement of the phase vector J: (t) of system (1.1) is possible 
at any instant t E [b,, rl . lt is required to find a control method II E u maximiz- 

ing the probability that the phase vector r (t) hits onto the set 

RE = {z; (xl2 _t- . . . q2)“* < E} (1.3) 

at a finite instant T . It is reckoned that the radius of sphere &a dependent on a Rum- 

ber E, is fairly small. 

Note. If the elements of matrix A (t) depend smoothly on 1 E Itot Tft SyStem(l.1) 
can be reduced to the system 

a.zJ& = B (21, t)u -t- C WE Wt 31 (to) = zl,,, 

by a change of variables. Therefore, without loss of generality it can be assumed that 
A (t) s 0 in (1.1). 

Consider the bellman function 5’ (x, t) of problem (1.1) - (I.% equal to the maxi- 
mum value of the probability of hitting onto set R, under the condition that the process 
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starts from a phase vector z (t) = 5 at an instant t . The Bellman equation forfunc- 

tion ,tj has the form [2 - 41 

s, = ma=u J? (29 t, s,, u) + ‘1s sp (C,C,‘S,$ (1.4) 

Here is 8, to S 
is of first S, is the matrix of second partial derivatives 

of the function S with respect to the compone& of vector Z, Cl and I3s are matrices 

obtained from matrices C and B by the substitution t = T - t. 
The inequality 

(1.5) 

is valid since matrix C is nonsingular for all z E IO, Tl . The function S satisfies 
the boundary condition 

s (3, 0) = 
1, ZE RI 
() Z r$ R (1.6) 

, c 

at the instant T of process terminationScorresponding to the value r~ = 0 . 
As a result the problem (1. l)-(1.3) on determining the optimal control synthesis is 

reduced to solving a Cauchy problem for the nonlinear parabolic Eq. (1.4) with bound- 

ary condition (1.6) under the assumprion that a solution of Eq. (1.4) with (1.6) exists 
and is unique. An exact description of the class of such problems can be found in mo- 

nograph [6]. The optimal control is determined after the determination of function S 

from the condition that the maximum is achieved in (1.4). 

2, Small prrrm@br method, Introduce the new variables 

a = Xi/e, t = 192,..., n 

Equation (1.4) and condition (1.6) take the form n 

(2.1) 

._ 

A (S; u) = - u’s, + a ma=, iY (ze, z, S,, U) + + x cif (z) Ssjsj= 0 (2.2) 

i, j=l 

Note. The optimal control problem for a system in the presence of measurement 
errors for the phase vector z (f) and the problem on maximizing the probability of hit- 

ting onto a fixed set at the instant t = T if the intensity of the Gaussian white noise in 
(1.1) is a quantity of the order of 8-l or if the possibiltty of control turns out to besmall, 
both reduce this same mathematical problem [5]. 

Assume that a number a > 0 exists such that the relation 

H (ZE, ‘c, S,, u) = eaHe (z, T, S,, u) 

is satisfied, where the function He is bounded for all e > (I and for finite values of its 
arguments 

bij’ = e-9 (ze, T) 
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Denote by Lg (8) the differential operator 
n ._ 

L”(S) = - EV, + + c cij tz) '.ZiZ j 

i, j=1 
(2.3) 

An approximate solution of problem (2.2) is sought as a sum of two functions 

so (2, a; E) + &l+a s (2, T’; E) (2.4) 

The function So is found by solving the boundary-value problem 

Le (SO) = 0, S” Iszo = s ITSO = 9 (2) (2.5) 

The function ,!? is determined as a solution of the problem 

Lg (Sl) + max, He (2, z, S,', u) = 0, S1 jr=0 = 0 (2.6) 

It will be shown below that in certain cases it makes sense to seek the approximate so- 

lution of problem (2.2) in the form 

S” (2, z; r) + .-* &+a) Sj (2, ‘t; E) (2.7) 

where the functions Sk (k = 2,3, . . . , j) are determined recurrently from the solu- 
tions of the boundary-value problems 

Lg (P) + max, HE (2, 7, Szk-l, 24) = 0, S" IzEo = 0 (2.8) 

The functions v”, u’, . . , from U are determined by the relations 

max, HE (2, -r, S,j, u) = HE (2, T, S,j, d), i =% 1,2,... (2.9) 

The solution of each of the boundary-value problems (2.5) and (2.8) can be obtained in 

explicit analytic form. For this it suffices to write down the fundamental solution of Eq. 

(2.5) 

. 
Here coij (r) are the elements of the matrix inverse to the matrix 1 Cip I), which is de- 

fined by the formula + 

c$ = s c ij (zr) dq 
0 

The function So is found as a result of a convolution with respect to variable z 

so (2, z; e) = p” (2, q*s” (2, 0; 8) = ,A&IP (2 - A, 9) dh (2.10) 

The functions Sk, k = 1, 2, .,. ,j are determined by the formula 

S”(z,r;s)=~pP(h ) 71, g-1 (h, $1;. e) uk-1) p (2 - h, z - $1) dtiz1 (2.11) 
0 

the integration with respect to & in (2.11) is carried out over R”.Certain properties of 
the functions Sk, k = 0, 3, 2, . . . . j should be noted. 

Lemma. Let the coefficients bliS be of the linear form We satisfy the inequality 

1 blE (2, z) 1 g bo (1 -I- b (8) 1 2 1 7, 43, b b-4 = const (2.12) 
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Then the bounds 

/T)zSk~\<i&8k+i'1rtXp (-Y~t.?IZIB/(-T +&) +89.&x%} (2.14) 

1 I1 < 1, k = GL9i 

with certain constants M%, yR, Sk and pkare valid, 

Proof. The derivatives with respect to variable z of the ~ndamental solution pC 
of boundary-value problem (2.5) satisfy [7] the bounds 

1 D’ PC (Z--3L, ?) I\<?$ 1 1 Z-1 l i/s ?i-W%-n’z @Xp (-y8s~Z--h /“/xl, Ill<2 

with certain constants M and y depending on the coefficients ctf (~1 in the last rela- 

tion of (L4). Therefore 

where 
1 D’s” 1 < 8fll dElia .f (2, Z, 8) 

I(Z, Z, 8) = ??28”%-“‘s 

The equality 

f (2, T, 8) = m&-n/* exp 

- 89’(j k 1” - 2 

is valid. When \ k 14 i the maximum value of the form 

Ifi hiZi 
bl 

equals 

jIlziI 

hence when J z I> 4 

I@, T, 8) < M,’ exp 

Here &&a’ is a constant such that I (0, Z, e) < Me’. On the other hand, when 1 z I< 
4 and z E IO, 2’1 the integral 1 (z, Z, 81 , as a function of z , z ant 8 , is bounded. 

Therefore, a constant Ma > ikf,,’ can be chosen so as to satisfy inequality (2.13). 
Let us prove inequality (2.14) with k = 1 for the function 8’. The estimate 

1 IF b, z, s,*, @“> I< K, 8z-“* exp (-e-a ye 1 z 1 * / T}, K,=mnst 

is valid by virtue of inequalities (2.12) and (2.13). At first we show that function Sr 
and its first derivatives in z are bounded on the set 1 z 1 = 0 for all z. Using inequal- 

ity (2.13), from (2.11) we have 
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f=i,Z,...,n 

Since 

is valid with the constant K4 = K&a . Set zs = -c, / z. To within a constant thelast 
integral takes the form 1 

II = s CJ -% (1 - z*p dz% 
0 

This expression is the Euler integral of the first kind (beta-function) which can be ex- 
pressed in terms of the Euler gamma-function 

+~+ 

As a result we obtain that the functions S,l (I = 1, l ... n) are bounded for 1 z I= 0 

and z E to, 2’1. 
Let us set S = e w exp (- 9 y. 1 z I a / tdl (z + S&l + es!% +b where 4, 6, 

and p1 are constants to be chosen later. From (2,7) we have that the the relations 

L= (w) + LC1 G-4 + fl f 2, z, &) w + E-1 exp { +82 yg f 2 1 2 / Go 15) 

[d, (z f S,)] - e$q} Hqz, 7, s;, 8) = 0, w tT=a = 0 

are valid for the function w . Here 

n 

YJ 
CijZiZj - @ToI~la 

4(1:-i-W - 
(2.16) 

i, j==l 

Since inequality (1.5) is satisfied,by choosing the constants 4 = 5do and pL1== ftCoY0 1 
5doQl, where c, is a constant such that 

I i cdd<:c(l 
i-1 

we obtain that the function fi (2, z, B) ( 0 for all z and Z. This enables us to apply 
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to Eq. (2.15) the maximum principle [S] for parabolic equations on the set 1 7 I> so> 
0, 7 E [O, T]. If the number e0 is fairly small, then by virtue of continuity on the set 
1 z 1 ( e, the function w, as was shown above, is bounded: 1 uf I < Rs, K, > 3t& / 
4. From the maximum principle it follows that function w is bounded on the set 1 .z 1 > 
e,, ‘G E IO, T1 and inequality (2,14) is satisfied for 1 I 1 = 0. We now choose a con- 

stant MI > Ks and a number b1 such that 6, > e2y, / 54 (In IIf, - In K$, then 
inequality (2.14) remains valid for all z and z with YI = YO / O$ for I I [ = 0. 

In order to obtain estimate (2.14) for the derivative of function S1 it is necessary to 

differentiate Eq. (2.6) with respect to variable z and to repeat once more the arguments 

used above. The single differentiation with respect to z increases the order of estimate 
(2.14) in e by unity. The estimates for the functions Sk, k = 2, . . . , j are obtained 

similarly~using estimate (2.14) with I I I = 1. 

3, Error estimates for the approximate rolutfon. Approximate 
syntherft of the optimal control, Denote W1 = S” +e(l+a)S1, where,!?’ 
and S1 are the functions obtained by formulas (2.10) and (2.11) as a result of solving 

the boundary-value problems (2.5) and (2.6). Here cx; is the positive number defined 
earlier in Sect, 2, Let us estimate the error yielded by the function W1. 

The ore m 1, Let condition (2.12) be satisfied. Then the estimate 

I 5 - IT’ I\< li”d~*+~~ exp {--evl 1 2 1’ I (z + 6,) + 8% PI*) (3.1) 

is valid for function W1 . Here function S is a solution of the Bellman Eq. (2.2) ; yl, 
S, and ptl are the constants occurring in (2.14) and h: is a constant. 

Proof, Letusset S = WI + w. Taking the notation in (2.2)- (2.4) into account, 
we obtain 

Since 

0 = A (8; u) = A (so + $+a Is” + 0; u) = L’ (sq + 

ef+a La (23’) +Lr (co) +el*a max,H‘ (2, z, 8,’ + el+O Szl +oz; u) 

max, Ht (2, z, Szo + t3f+aSz1 + 0,; u) < H* (2, z, SE’, v”> + 
el+” H* (2, z, S,l, 29) + max, Ha (2, z, oz, 24) 

where v” and d are the functions defined by relations (2.8), the inequality 

0 = A (S; a) < La (So) + el+a ILc (SI) + He (z, z, St, v”)l + (3.2) 

#+“) HC (2, a, &I, v’) + A (0; u) 

is valid By virtue of (2.5) and (2.6), from (3.2) follows 

A (0; u) + Ea (I +a) He (2, 7, S,l 9) > 0 (3.3) 

Using estimate (2.14) with I 2 1 = 1, we obtain the validity of the inequality 

I H’ (2, a, szl, vl) I < Ke” g, (2, z, e) (3.4) 

gl (2, T, ~1 = exp {--esrl 1 2 1 V (z + 6,) + es ~~7) 

We set w = o1 + Kz@+~= g, (z, z, E) ; then 

A (w; u) + e-+a) HZ (z, z, Szl, v”) < A fq; u’) + fa (2, ~9 8) -b (3.5) 

K &*+s= g, (2, ‘G, E) 
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Here u1 is a function from u such that 

ma% HC (z, 7, @l,zr U) = He (z, 7, til *, UI) 

12 (2~ 7~ 6) = f~ (2, 7, 8) gl(z,%e) + mk, HC (z, z, gl,r, u) - Ke4+2a g, (z, z, E) 

Function fl has been defined by equality (2.16). 
Similarly to what was done in the lemma when proving estimate (2.14),it can be shown 

that f2 (2, z, e) + Ki34+2a g, (z, T, e) ( 0 for all z, ‘5 and 8 > 0. Therefore,the 
inequality 

follows from (3.4) and (3.5). Once again applying the maximum principle [8] to tile pa- 
rabolic operator d (ol; ul), we have that o1 < 0. Hence follows the inequality 

s - W1 < K7e4+2a g, (2, 2, E) (3.6) 

On the other hand, let U* be the optimal control of the original problem ; then 

0 = A (S; U*) > A (S; V”) (3.7) 

is valid. Here vu is the function obtained from (2.9) with j = 0. Using equalities 
(2.5) and (2.6), we obtain the validity of 

A (IV’; 8”) - ~~(l+~) HE (z, T, Szl, S) = 0 (3.8) 

A (wl _ s; vo> _ ~~(l+=) H” (z, T, Szl, 8) > 0 (3.9) 

follows from (3.6) and (3.8). 

Consider the function w, = w1 - ,$ - K~$+sa g, (2, ‘6, e), where K is the con- 

stant from (3.4). Then, the equality 

A (W’ - S; 8”) = A (0,; v”) ff2 (z, 7, e) 

is satisfied. Just as before, it can be shown that f2 (z, T, E) + KE~+~” gl (z, T, E) < 0 
for all Z, 7 and e > 0 ; therefore, allowing for inequality (3.4), from (3.9) we obtain 

A (02; 4 > 0, 02 Ir=o = 0 

Applying the maximum principle again, we obtain 

w1 - s < KT&4+2a g, (2, z, E) (3.10) 

Now (3.1) follows from (3.6) and (3.10). 
Note. Condition (2.12) on the coefficients of the form HS is necessary for the ap- 

plication of the maximum principle [8]. 
Corollary 1. Let the inequality 

1 b&Z, 7) 1 < b~17’~’ [I + b (e) 1 z 1 3, b,, b (8) = const (3.11) 

be satisfied instead of inequality (2.12). Then the estimate 

( s - S” [ < Ko ZE~+~ exp {--buys 1 z 1 2 / (z + 6,) + E2p0~} (3. W 

is valid with constants y,,, 6, and p,, and with some constant K,. 

The proof of estimate (3.12) is similar to the proof of estimate (3.1). Instead of in- 

equality (3.4) it is necessary to use the inequality 



Asymptotic solutions of some probabilistic optimal control problems 17 

which follows from (2.13) with [ II = 1 and from inequality (3.11). 

N o t e 4. It can be shown [9] that as an~-n’a -, 0 the function S” being a function- 

al of the uncontrolled motion, decreases as a quantity proportional to E%?‘~. Ear small 

values of z such that ?%-” + 0 the function S’ is a quantity of order of unity since 

the boundary condition S” (z, 0; e) z II, (a) is satisfied, Therefore, the estimate (2.13) is 

weaker as E~Z-“~~ + 0 and n> 2 ; however, it allows for the asymptotic behavior as 
1 z 1 - X, which is important for deriving estimate (3.1) under assumption(2.12). Asymp- 

totics enc+s would impose on the coefficients of form HC conditions of the kind of 

1 bti (z,z) I < b (e)z nls which are more restrictive than conditions (2.12) and (3. 11). 

Theorem 1 shows that the function IV1 well approximates the Bellman function S of 

the original problem. However, in certain cases the following approximations can be used. 

Corollary 2. Let the hypothesis of Theorem 1 be valid and let the identities 

u0 z $5 . . . $3 i = 1,2,3, . . . (3.13) 

be fulfilled. Here the functions v’, j = 0, 1, . . . 1 are determined from relations 

(2.9). Then, the estimate 

I S - I@1 < KjT&(j+r)(z+a)exp ( 
-earj I 2 1 2 / (T + 6,) + e2p,T) (3.14) 

with constant Kj and constants yj, 6j and pj from the estimate (2.14) is valid for the 
function W1 = so + ~l+aS + . . . + Eu+4sj obtained when solving the bound- 
ary-value problems (2.5) - (2.8). 

Proof. Consider the functions oj = S - W'. Similarly to inequality (3.2) we 
obtain j-1 

0 = A (S; u) Q Lc (So) + ,5J ei(l+=) [Lc (Sj) + HE (z, z, Si, v’)] + 
i=l 

d(l+a)HE (2, Z, AT,‘, Vj) + A (Oj; U) 

By virtue of (2.6) - (2.9) we obtain the inequality 

A (oj; U) + ei(l+a) HE (z, T, Si, vi) > 0 

Hence, similarly to (3.5) we obtain the inequality 

s- & & RjTE(j+1)(2+a) gj (2, T, E) 

where KI is a constant, whose existence is guaranteed by inequality (2.14) 

1 H’ (z, T, SJ, Vj) \& Kje’+’ gj (2, 7, e) 

The function gj (z, 7, e) is determined similarly to the function g,. The second in- 
equality follows from (3.7) and the relation 

A (Wj; v’) - &+a) H’ (2, z, s,j, 72”) = 0 

valid when condition (3.11) and equalities (2.6) - (2.9) are satisfied. 

The constructed asymptotic approximations IV1 and IV’, j = 2, 3, . . . do not 
answer the question on what the synthesis of the original problem’s optimal control 
should be. 

We show that the control V” found from relation (2.9) with i = 0, is nearly optimal 
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in the sense of the proximity of the corresonding fnnctionals. Let &! denote a function 
which is a solution of the boundary-value problem 

A (G; u”) = 0, G iz=e = 9 (z) (3*X5) 

Theorem 2. Let condition (2.12) be satisfied. Then the estimate 

o<s--- . G c 2KmPaa exp [--@yr 1 z 1 a / (z i- 6,) -I- raw3 

is valid with the constants H, yl, a1 and pr from (3.1). 
Proof- From inequality (3.7) and equality (3,X5) it follows that 

s-G>0 (3.16) 

On the other hand, using (3.8) and (3.15), we obtain 

A (W - G; v’) - &*f1+x) HE (z, z, s,1, u”) = 0 

fnst as in the proof of ~e~a~~~ (3.10) we have that 

Wl - G > Km**2rgl (z, z, E) (3.17) 

From (3,17) and (3.6) follows 

OQ!L-G== (8 - W’) + ( w1 + G) 4 2Kze4*% (2, z, 8) 

Corollary 3, Let identities (3.13) be fulfilled and let inequality (2.12) be valid. 
Then the estimate 

O+C- G g 2~~~~~~~l~(z*“} exp (--Ebb 1 z 1 a f (z -i- 6j) -i- @!p$f 

is fulfilled. 
N o te . 5 e The results obtaiued remain valid even when the set R, is a paralblepi* 

ped with sides that are multiples of the value of e or is a strip of width e. In the Latter 
case the change of variables (2.1) needs to be carried out only for a partofthe variables. 

Example, Let the Controlled motion of a material point be described by the equa- 
tion 

all /sita =u+Et iul\<& t E IO, f, y (0) = &!r Y’ (0) = go* 

where & is Gaussian white noise of unit intensity. We seek the synthesis of the optimal 
control maximizing the probability of hitting onto the set 1 y 1 < 8 at the instant t=r 
and the value itself of this probability, We set 1 = (2’ - t)+’ + z ; then 

~-(T--l)@i_4f, i=fG% tEf% Tf, ~~~~=%3 

Such a change does not alter the functional of the final State Since II (T)= + (T). 
The Bellman eq@ion and the boundary condition, allowing for s~bs~t~~g (2. If, take 

the form 

According to (2.5) and (2.6) we find the functions so and 81, as well as the Control V“ 
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v” =t sign SzQ = sign (exp (-e* (2 + 1)” / 22)11- exp (~4 /o)]] -5 I --i,Z>O 
+I, a < O 

e*P I - I32 (z - ?p 
2 (z ---7x) dhdz 

1 

For the case being considered we find the values of the constants used in the lemma and 

in Theorem 1 
M, = AlI = (2n)“‘z exp {-&a], y6 = s/* 

K*= K,= IQ=& K,=l/;li/2f(S/& d,&c,=i 

We choose the constant K such that R > max (K,; iIf,}, then 6, > 3Gf4c10 (In K - 
ln fil,), p = s/&%I, yI = T&I = 3/40. The validity of the estimate 

I s - (8” -I- ES’) I< K Ts4exp { -3G 1 z I%/40 (T + a,) + 3e%/208J 

stems from Theorem 1. 
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